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Abstract. Given two arbitrary categories, a pair of adjoint functors
between them induces three pairs of full subcategories, as follows: the
subcategories of reflexive objects, that is objects for which the unit (re-
spectively counit) of the adjunction is an isomorphism; the subcategories
of local (respectively colocal) objects w.r.t. these adjoint functors; the
subcategories of cogenerated (respectively generated) objects w.r.t this
adjoint pair, namely objects for which the unit (counit) of the adjunc-
tion is a monomorphism (an epimorphism). We investigate some cases in
which the subcategory of reflexive objects coincide with the subcategory
of (co)local objects or with the subcategory of (co)generated objects. As
an application we define and characterize (weak) ∗-objects in the non
additive case, more precisely weak ∗-acts.

Introduction

In mathematics the concept of localization has a long history. The origin
of the concept is the study of some properties of maps around a point of a
topological space. In the algebraic sense, localization provides a method to
invert some morphisms in a category. Making abstraction of some technical
set theoretic problems, given a class of morphisms Σ in a category A, there
is a category A[Σ−1] and a functor A → A[Σ−1] universal with the property
that it sends any morphism in Σ to an isomorphism. This functor will be
called a localization, if it has a right adjoint, which will frequently be fully
faithful. Dually this functor is called a colocalization provided that it has a
left adjoint.

Let us present the organization and the main results of the paper. In the
first section we set the notations, we define the main notions used throughout
the paper and we record some easy properties concerning these notions.

In Section 2 are stated and proved the formal results. In Theorem 2.1
we investigate when a pair of adjoint functors induces equivalences between
the subcategories of local and colocal objects. Next we obtain a formal
characterization of a non additive (weak) ∗-object, that is Proposition 2.7
and Theorem 2.8. Concerning both characterizations note that only one
implication was considered before, namely in [2].
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In Section 3 we define and characterize the notions of a (weak) ∗-act
over a monoid, in Proposition 3.2 and Theorem 3.3, providing in this way
a translation of the notion of (weak) ∗-module in this new setting. It is
interesting to note that our approach may be continued by developing a
theory analogous with so called tilting theory for modules. The Morita
theory for monoids is a consequence of our results.

The author would like to thank an anonymous referee for many obser-
vations leading to improvements of this paper. Especially, the author is
indebted to the referee for putting to his attention the monad–based ap-
proach of the matter from Section 2, by signalizing him the recent preprint
[2], which sends further to [5] and [8].

1. Notations and preliminaries

All subcategories which we consider are full and closed under isomor-
phisms, so if we speak about a class of objects in a category we understand
also the respective subcategory. For a category A we denote by A→ the cat-
egory of all morphisms in A. We denote by A(−,−) the bifunctor assigning
to any two objects of A the set of all morphisms between them.

Consider a functor H : A → B. The (essential) image of H is the sub-
category Im H of B consisting of all objects Y ∈ B satisfying Y ∼= H(X)
for some X ∈ A. In contrast we shall denote by im α the categorical notion
of image of a morphism α : X → X ′ in A→, that is the smallest subobject
i : X ′′ → X ′ such that f factors through i (see [13, 1.18]). A morphism
α ∈ A→ is called an H-equivalence, provided that H(α) is an isomorphism.
We denote by Eq(H) the subcategory ofA→ consisting of all H-equivalences.
An object X ∈ A is called H-local (H-colocal) if, for any H-equivalence ε,
the induced map ε∗ = A(ε,X) (respectively, ε∗ = A(X, ε)) is bijective, that
means it is an isomorphism in the category Set of all sets. We denote by
CH and CH the full subcategories of A consisting of all H-local, respectively
H-colocal objects. For objects X ′, X ∈ A, we say that X ′ is a retract of X
if there are maps α : X ′ → X and β : X → X ′ in A such that βα = 1X′ .
We record without proof the following properties relative to the above con-
sidered notions:

Lemma 1.1. The following hold:
a) Eq(H) is closed under retracts in A→.
b) Eq(H) satisfies the ‘two out of three’ property, namely if α, β ∈ A→

are composable morphisms, then if two of the morphisms α, β, βα
are H-equivalences, then so is the third.

c) The subcategory CH (respectively CH) is closed under limits (respec-
tively colimits) and both are closed under retracts in A.

Moreover if every object of A has a left (right) approximation with an
H-local (colocal) object, in a sense becoming precise in the hypothesis of the
lemma below, then we are in the situation of a localization (colocalization)
functor, as it may be seen from:
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Lemma 1.2. If for every X ∈ A there is an H-equivalence X → XH with
XH ∈ CH (respectively, XH → X with XH ∈ CH), then the assignment
X 7→ XH (X 7→ XH) is functorial and defines a left (right) adjoint of the
inclusion functor CH → A (CH → A). Moreover the left (right) adjoint of
the inclusion functor sends every map α ∈ Eq(H) to an isomorphism and it
is universal relative to this property, so CH (CH) is equivalent to the category
of fractions of A with respect to Eq(H).

Proof. Straightforward. (The first statement was also noticed in [6, 1.6]).
�

In the sequel we consider a pair of adjoint functors H : A → B at the
right and T : B → A at the left, where A and B are arbitrary categories.
We shall symbolize this situation by T a H. Consider also the arrows of
adjunction

δ : T ◦H → 1A and η : 1B → H ◦ T.

Note that, for all X ∈ A and all Y ∈ B we obtain the commutative diagrams
in B and A respectively:

(1)

H(X)
ηH(X)//

1H(X) OOOOOOOOOOO

OOOOOOOOOOO
(H ◦ T ◦H)(X)

H(δX)

��
H(X)

and

T (Y )
T (ηY )//

1T (Y ) NNNNNNNNNNN

NNNNNNNNNNN
(T ◦H ◦ T )(Y )

δT (Y )

��
T (Y )

showing that H(X) and T (Y ) are retracts of (H ◦ T ◦H)(X), respectively
(T ◦ H ◦ T )(Y ). Corresponding to the adjoint pair considered above, we
define the following full subcategories of A and B:

SH = {X ∈ A | δX : (T ◦H)(X) → X is an isomorphism},
and respectively

ST = {Y ∈ B | ηY : Y → (H ◦ T )(Y ) is an isomorphism}.
The objects in SH and ST are called δ-reflexive, respectively η-reflexive.
Note that H and T restrict to mutually inverse equivalences of categories
between SH and ST and these subcategories are the largest of A and B
respectively, enjoying this property. Note that these subcategories were in-
tensively studied in the following particular case: Let R be a ring with
identity and let A be a right R–module. If E = EndR(A) is the endomor-
phism ring of A, then A has a natural structure of an E−R–bimodule, and
it induces a pair of adjoint functors HA : Mod-R � Mod-E : TA given by
HA(X) = HomR(A,X) and TA(Y ) = Y ⊗E A. Modules in ST and ST are
called reflexive in [3, Section 2.1] (from where our terminology) or static
respectively adstatic in [1]. Note also that this last cited paper works in a
setting more general that those of module categories, namely in the setting
of Grothendieck abelian categories.

Lemma 1.3. The following inclusions hold:



4 GEORGE CIPRIAN MODOI

a) SH ⊆ Im T ⊆ CH ⊆ A.
b) ST ⊆ Im H ⊆ CT ⊆ B.

Proof. a) The first inclusion is obvious. For the second inclusion observe
that for all ε ∈ Eq(H) and all Y ∈ B the isomorphism in Set→

ε∗ = A(T (Y ), ε) ∼= B(Y, H(ε))

shows that ε∗ is bijective. The inclusions from b) follow by duality. �

Lemma 1.4. Let C be a subcategory of A such that the inclusion functor
I : C → A has a right adjoint R : A → C and the arrow of the adjunction
µX : (I ◦ R)(X) → X is an H-equivalence for all X ∈ A. Then µX is an
isomorphism for all X ∈ CH , and consequently CH ⊆ C.

Proof. Let X ∈ CH . Since µX ∈ Eq(H), we deduce that the induced map

µ∗X : A(X, (I ◦R)(X)) → A(X, X)

is bijective, consequently there is a morphism µ′X : X → (I ◦ R)(X) such
that µXµ′X = 1X . Since R ◦ I ∼= 1C naturally, and µ is also natural, we
obtain a commutative diagram

(I ◦R)(X)
(I◦R)(µ′

X)
//

µX

�� UUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUU
(I ◦R ◦ I ◦R)(X)

µ(I◦R)(X)

��
X

µ′
X

// (I ◦R)(X)

showing that µ′XµX = 1(I◦R)(X), hence µX is an isomorphism. �

2. Some equivalences induced by adjoint functors

In this section we fix a pair of adjoint functors T a H between two
arbitrary categories A and B, as in Section 1.

Recall that a monad on the category B is a triple (E, η, µ), consisting of
an endofunctor E : B → B and two natural transformations η : 1B → E and
µ : E ◦ E → E inducing the commutative diagrams:

E ◦ E ◦ E
Eµ //

µE

��

E ◦ E

µ

��
E ◦ E µ

// E

and
E

FF
FF

FF
FF

F

FF
FF

FF
FF

F
Eη // E ◦ E

µ

��

E
ηEoo

xx
xx

xx
xx

x

xx
xx

xx
xx

x

E

.

The monad above is called idempotent if µ : E ◦ E → E is an isomorphism
(see [5, Section 2]). Note that the pair of adjoint functors T a H above
induces a monad (H◦T, η,HδT ) on B. Conversely from a monad we obtain a
pair of adjoint functors (see [10, Chapter VI] for details concerning monads).

Theorem 2.1. The following are equivalent:
(i) SH = Im T .
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(ii) ST = CT .
(iii) ST = Im H.
(iv) SH = CH .
(v) The functors H and T induce mutually inverse equivalence of cate-

gories between CH and CT .

Proof. (i)⇒(ii). The condition (i) is equivalent to the fact that the monad
(H ◦T, η,HδT ) is idempotent by [5, Proposition 2.1]. Thus ST = CT , by [5,
Lemma 2.8] (there the T -local objects are called Eq(T )-closed).

The implication (ii)⇒(iii) follows immediately from Lemma 1.3, whereas
the implications (iii)⇒(iv) and (iv)⇒(i) are the dual of (i)⇒(ii), respectively
(ii)⇒(iii).

Finally the equivalent conditions (i)–(iv) are also equivalent to (v), be-
cause SH and ST are the largest subcategories of A and B for which H and
T restrict to mutually inverse equivalences. �

Corollary 2.2. The adjoint functors T a H induce mutually inverse equiv-
alences CH � B if and only if T is fully faithful. Dually the adjoint pair
induces equivalences A � CT if and only if H is fully faithful.

Proof. The functor T is fully faithful exactly if the unit of the adjunction
η : 1B → (H◦T ) is an isomorphism, or equivalently, ST = B. Now, Theorem
2.1 applies. �

Theorem 2.1 and Corollary 2.2 generalize [1, Theorem 1.6 and Corollary
1.7], where the work is done in the setting of abelian categories, and the proof
stresses the abelian structure. These results may be also compared with [12,
Theorem 1.18], where the framework is also that of abelian categories.

Remark 2.3. Most of the implications from Theorem 2.1 are known to spe-
cialists. Moreover there are also other categories equivalent to CH or CT .
For example they are equivalent to some categories of fractions as in Lemma
1.2 (see also [5, Theorem 2.6]); precisely Lemma 1.2 tells us that in the hy-
potheses of Theorem 2.1 the functor A → CH , X 7→ (T ◦H)(X) is the right
adjoint of the inclusion functor of SH = CH into A (we are in the situation of
a colocalization) and the functor B → CT , Y 7→ (H ◦T )(Y ) is the left adjoint
of the inclusion functor of ST = CT into B (a localization). Other categories
which are equivalent to CH or CT are the so called Eilenberg–Moore category
or to the Kleisli category (see [5, Theorems 2.6 and 2.7], results revisited
also in [2]). However the equivalence of all five conditions of the theorem
above seems to be stated here for the first time.

We consider also the following subcategories of A and B respectively:

GH = {X ∈ A | δX : (T ◦H)(X) → X is an epimorphism},

GT = {Y ∈ B | ηY : Y → (H ◦ T )(Y ) is a monomorphism}.
The dual character of all considerations in the present section continues to
hold for GH and GT .
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Lemma 2.4. The following statements hold:
a) The subcategory GH (respectively GT ) is closed under quotient objects

(subobjects).
b) Im T ⊆ GH (respectively Im H ⊆ GT ).

Proof. a) Let α : X ′ → X be an epimorphism in A with X ′ ∈ GH . Since δ
is natural, we obtain the equality αδX′ = δX(T ◦H)(α), showing that δX is
an epimorphism together with αδX′ .

b) From the diagrams (1), we see that δT (Y ) is right invertible, so it is an
epimorphism for any Y ∈ B. Thus Im T ⊆ GH . �

The subcategory GH of A is more interesting in the case when A has
epimorphic images, what means that it has images and the factorization of
a morphism through its image is a composition of an epimorphism followed
by a monomorphism (for example, A has epimorphic images, provided that
it has equalizers and images, by [11, Chapter 1, Proposition 10.1]). Suppose
also that A is balanced, that is every morphism which is both epimorphism
and monomorphism is an isomorphism. Thus every factorization of a mor-
phism as a composition of an epimorphism followed by a monomorphism is
a factorization through image, by [11, Chapter 1, Proposition 10.2]. With
these hypotheses it is not hard to see that the factorization of a morphism
through its image is functorial, that means the assignment α 7→ im α defines
a functor A→ → A. Note that a category A is balanced with epimorphic
images if and only if its dual satisfies the same property, so we may dualize
results established in such categories.

Proposition 2.5. If A is a balanced category with epimorphic images, then
the functor A → GH , X 7→ im δX is a right adjoint of the inclusion functor
GH → A.

Proof. By hypothesis im δX is a quotient of (H ◦T )(Y ) and H(T (Y )) ∈ GH ,
so the functor A → GH , X 7→ im δX is well defined, by Lemma 2.4. Let
now α : X ′ → X be in A→, where X ′ ∈ GH and X ∈ A. Since δX′ is an
epimorphism, it follows that

im α = im (αδX′) = im (δX(T ◦H)(α)) ⊆ im δX ,

so α factors through im δX . This means that the map

A(X ′, im δX) → A(X ′, X)

is surjective. But it is also injective since the functor A(X ′,−) preserves
monomorphisms, and the conclusion follows. �

Corollary 2.6. If A is a balanced category with epimorphic images, then
the morphism im δX → X is an H-equivalence and CH ⊆ GH .

Proof. The second statement of the conclusion follows from the first one by
using Proposition 2.5 and Lemma 1.4. But H carries the monomorphism
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im δX → X to a monomorphism in B, because H is a right adjoint. More-
over, since H(δX) is right invertible, the same is true for the morphism
H(im δX) → H(X), as we may see from the commutative diagram

(H ◦ T ◦H)(X)
H(δX) //

((PPPPPPPPPPPP
H(X)

H(im δX)

99ssssssssss
.

�

Proposition 2.7. Suppose B is a balanced category with epimorphic images.
The following are equivalent:

(i) The pair of adjoint functors T a H induces mutually inverse equiv-
alences CH � GT .

(ii) ηY : Y → (H ◦ T )(Y ) is an epimorphism for all Y ∈ B.

Proof. (i)⇒(ii). Denote Y ′ = im ηY . Then the unit ηY of adjunction factors
as Y → Y ′ → (H◦T )(Y ), where the epimorphism Y → Y ′ is a T -equivalence
by the dual of Corollary 2.6, and Y ′ → (H ◦ T )(Y ) a monomorphism. Since
(H ◦T )(Y ) ∈ Im H ⊆ GT and GT is closed under subobjects, we deduce that
Y ′ ∈ GT . Now (i) implies that ηY ′ is an isomorphism, so the diagram

Y //

ηY

��

Y ′

ηY ′
��

(H ◦ T )(Y )
∼= // (H ◦ T )(Y ′)

proves (ii).
(ii)⇒(i). The condition (ii) implies that the monad (H ◦ T, η,HδT ) is

idempotent, according to [2, 3.7]. Thus Im T = SH and (i) follows by
Theorem 2.1. �

Combining Proposition 2.7 and its dual we obtain:

Theorem 2.8. Suppose both A and B are balanced categories with epimor-
phic images. The following are equivalent:

(i) The pair of adjoint functors T a H induces mutually inverse equiv-
alences GH � GT .

(ii) δX : (T ◦ H)(X) → X is a monomorphism for all X ∈ A and
ηY : Y → (H ◦ T )(Y ) is an epimorphism for all Y ∈ B.

Remark that [4, Proposition 2.2.4 and Theorem 2.3.8] provide character-
izations of (weak) ∗-modules which are analogous to Proposition 2.7 and
Theorem 2.8 above. These results will be used in Section 3, for defining the
corresponding notions in a non additive situation. We note also that the
implications (ii)⇒(i) in both Proposition 2.7 and Theorem 2.8 are already
considered in a more general situation in the recent preprint [2].
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We end this section with a better determination of the category GH given
in a particular case, a result which we need in the following section. Sup-
pose now A is a cocomplete category and E is a small category. Denote
by [Eop,Set] the category of all contravariant functors from E into Set.
Then we view E as a subcategory of [Eop,Set], via the Yoneda embed-
ding E → [Eop,Set], e 7→ E(−, e). For simplicity, we shall write [Y ′, Y ]
for [Eop,Set](Y ′, Y ), where Y ′, Y ∈ [Eop,Set]. For every Y ∈ [Eop,Set] de-
note by E ↓ Y the comma category whose objects are of the form (e, y) with
e ∈ E and y ∈ Y (e) and whose morphisms are

(E ↓ Y )((e′, y′), (e, y)) = {α ∈ E(e′, e) | Y (α)(y′) = y}.
The projection functor E ↓ Y → E is given by (e, y) 7→ e and α 7→ α for all
(e, y) ∈ E ↓ Y and all α ∈ (E ↓ Y )((e′, y′), (e, y)). Observe then that the
subcategory E is dense in [Eop,Set], what means, for every Y ∈ [Eop,Set] it
holds

Y ∼= colim((E ↓ Y ) → E → [Eop,Set]) = colim
(e,y)∈E↓Y

E(−, e),

where the last notation is a shorthand for the previous colimit.
For a functor A : E → A, consider the left Kan extension of A along the

Yoneda embedding:

TA : [Eop,Set] → A, TA(Y ) = colim
(e,y)∈E↓Y

A(e),

which may be characterized as the unique, up to a natural isomorphism,
colimit preserving functor [Eop,Set] → A, mapping E(−, e) into A(e) for all
e ∈ E . The functor TA has a right adjoint, namely the functor

HA : A → [Eop,Set],HA(X) = A(A(−), X).

In order to use the results of Section 1, we recall the notations made there,
namely let δ : TA ◦ HA → 1A and η : 1B → HA ◦ TA be the arrows of the
adjunction. For simplicity we shall replace in the next considerations the
subscript HA and the superscript TA with A. So objects in CA, CA, GA and
GA will be called A-colocal, A-local, A-generated, respectively A-cogenerated.

Suppose additionally that A is fully faithful. Note that this additional
assumption means that the category E may be identified with a (small)
subcategory of A and A with the inclusion functor. For example, if E has a
single object, then A may be identified with an object of A.

Lemma 2.9. If A is a cocomplete, balanced category with epimorphic images
and A : E → A is fully faithful, then it holds:

a) A(e) ∈ SA for all e ∈ E.
b) An object X ∈ A is A-generated exactly if there is an epimorphism

A′ → X with A′ a coproduct of objects of the form A(e) with e ∈ E.

Proof. a) Since A is fully faithful, we have the natural isomorphisms:

(TA ◦HA)(A(e)) = TA(A(A(−), A(e)) ∼= TA(E(−, e)) ∼= A(e),
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for every e ∈ E .
b) Let A′ =

∐
A(ei) ∈ A be a coproduct of objects of the form A(e). By

the result in a) we deduce

A′ =
∐

A(ei) ∼=
∐

(TA ◦HA)(A(ei)) ∼= TA(
∐

HA(A(ei))) ∈ Im TA,

so A′ ∈ GA, since Im TA ⊆ GA, an inclusion established in Lemma 2.4. If
X ∈ A such that there is an epimorphism A′ → X, then X ∈ GA, again by
Lemma 2.4. Conversely, for every X ∈ A, the object HA(X) of [Eop,Set]
may be written as

HA(X) ∼= colim
(e,x)∈E↓HA(X)

E(−, e) = colim
(e,x)∈A↓X

E(−, e),

where the comma category A ↓ X has as objects pairs of the form (e, x)
with e ∈ E and x ∈ A(A(e), X). Thus

(TA ◦HA)(X) ∼= colim
(e,x)∈A↓X

TA(E(−, e)) ∼= colim
(e,x)∈A↓X

A(e),

so there is an epimorphism from
∐

(e,x)∈A↓X A(e) to (TA ◦HA)(X). Further
the morphism δX : (TA ◦HA)(X) → X is an epimorphism too, for X ∈ GA.
Composing them we obtain the desired epimorphism. �

3. ∗-acts over monoids

We see a monoid M as a category with one object whose endomorphism
set is M . We consider the category [Mop,Set] of all contravariant functors
from this category to the category of sets, and we call it the category of
(right) acts over M , or simply M -acts. Clearly an M -act is a set X together
with an action X×M → X, (x,m) 7→ xm such that (xm)m′ = x(mm′) and
x1 = x for all x ∈ X and all m,m′ ∈ M . Left acts are covariant functors
M → Set, that is sets X together with an action M × X → X, satisfying
the corresponding axioms. For the general theory of acts over monoids and
undefined notions concerning this subject we refer to [9]. We should mention
here that in contrast with [9] we allow the empty act to be an object in our
category of acts, for the sake of (co)completness. Note that the category
of M -acts is balanced and has epimorphic images, by [9, Proposition 1.6.15
and Theorem 1.4.21].

Fix a monoid M and an object A ∈ [Mop,Set]. In order to use the
results of the preceding sections, we identify A with a fully faithful functor
E → [Mop,Set] where E is the endomorphism monoid of A. Thus A is
canonically an E − M–biact (see [9, Definition 1.4.24]), so we obtain two
functors

HA : [Mop,Set] → [Eop,Set], HA(X) = [A,X]

and
TA : [Eop,Set] → [Mop,Set], TA(Y ) = Y ⊗E A
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the second one being the left adjoint of the first (see [9, Definition 2.5.1 and
Proposition 2.5.19]). Clearly these functors agree with the functors defined
at the end of Section 2.

We say that A is a (weak) ∗-act if the above adjoint pair induces mutually
inverse equivalences HA : GA � GA : TA (respective HA : CA � GA : TA).
Note that our definitions for subcategories GA and GA agree with the char-
acterizations of all A-generated respectively A∗-cogenerated modules given
in [3, Lemma 2.1.2]. As we may see from Proposition 2.7, our subcate-
gory CA seems to be the non–additive counterpart of the subcategory of all
A-presented modules (compare with [3, Proposition 2.2.4]).

In what follows, we need more definitions relative to an M -act A. First
A is called decomposable if there exist two non empty subacts B,C ⊆ A
such that A = B ∪ C and B ∩ C = ∅ (see [9, Definition 1.5.7]). In this
case A = B t C, since coproducts in the category of acts are the disjoint
unions, by [9, Proposition 2.1.8]. If A is not decomposable, then it is called
indecomposable. Second, A is said to be weak self–projective provided that
(HA ◦ TA)(g) is an epimorphism whenever g : U → Y is an epimorphism in
[Eop,Set] with U ∈ SA. More explicitly, if g : U → Y is an epimorphism
in [Eop,Set], then TA(g) is an epimorphism in [Mop,Set] and our definition
requires that A is projective relative to such epimorphisms for which U ∈
SA. Third A is called (self–)small provided that the functor HA preserves
coproducts (of copies of A).

Lemma 3.1. With the notations above, the following are equivalent:
(i) A is small.
(ii) A is self–small.
(iii) E(I) is η-reflexive for any set I, where E(I) denotes the coproduct

indexed over I of copies of E.
(iv) E t E is η-reflexive.
(v) A is indecomposable.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii). If HA commutes with coproducts of copies of A then

E(I) =
∐
I

[A,A] ∼=

[
A,

∐
I

A

]
∼=

[
A,

∐
I

(E ⊗E A)

]
∼=

[
A,

(
E(I)

)
⊗E A

]
∼= (HA ◦ TA)

(
E(I)

)
.

(iii)⇒(iv) is obvious.
(iv)⇒(v). If A is decomposable, that is A = B t C with B 6= ∅ and

C 6= ∅, then let iB : B → A and iC : C → A be the canonical injections
of this coproduct. Denote also by j1, j2 : A → A t A the corresponding
canonical injections. The homomorphisms of M -acts j1iB : B → AtA and
j2iC : C → A tA induce a unique homomorphism f : A = B t C → A tA.
Obviously f ∈ (HA ◦ TA)(E t E) but f /∈ [A,A] t [A,A] = E t E.

(v)⇒(i) is [9, Lemma 1.5.37].
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�

Proposition 3.2. The following statements hold:
a) If A is a weak ∗-act then A is weak self–projective.
b) If A is weak self–projective and indecomposable, then A is a weak

∗-act.

Proof. a) Let A be a weak ∗-act and let g : U → Y be an epimorphism
in [Eop,Set] with U ∈ SA. We know by Proposition 2.7 that ηY is epic,
and by the naturalness of η that (HA ◦ TA)(g)ηU = ηY g. Since ηY g is an
epimorphism we deduce that (HA ◦ TA)(g) is an epimorphism too.

b) As we have already noticed HA preserves coproducts, provided that
A is indecomposable. Thus SA is closed under arbitrary coproducts in the
category of E-acts. For a fixed Y ∈ [Eop,Set] there is an epimorphism
g : E(I) → Y . Since E is η-reflexive the same is also true for E(I). But
(HA ◦ TA)(g) is an epimorphism, since A is weak self–projective. From the
equality (HA ◦ TA)(g)ηE(I) = ηY g it follows that ηY is an epimorphism too.
The conclusion follows by Proposition 2.7. �

Theorem 3.3. The following statements hold:
a) If A is a ∗-act then A is weak self–projective and CA = GA.
b) If A is indecomposable, weak self–projective and CA = GA, then A is

a ∗-act.

Proof. Both implications follow at once from Proposition 3.2. �

Remark 3.4. Propositions 2.7 and 3.2 and Theorems 2.8 and 3.3 provide a
non additive version of [3, Proposition 2.2.4] respectively [3, Theorem 2.3.8].
In contrast with the case of modules, where the functors are additive, for
acts it is not clear that a weak ∗-object must be indecomposable (the non
additive version of self–smallness as we have seen in Lemma 3.1). The main
obstacle for deducing this implication in the new setting comes from the fact
that non additive functors do not have to preserves finite coproducts.

Using the characterization of so called tilting modules given in [3, The-
orem 2.4.5], we may define a tilting M -act to be a ∗-act A such that the
injective envelope of M belongs to GA. Note that injective envelopes exist
in [Mop,Set] by [9, Corollary 3.1.23]. We may ask ourselves if some results
which are known for tilting modules, e.g. the so called tilting theorem [3,
Theorem 3.5.1], do have correspondents for acts. We don’t answer now to
this question, the study of this parallelism remaining as a subject for future
research.

Our next aim is to infer from our results the Morita–type theorem for
monoids (see [9, Section 5.3]). In order to perform it we need a couple of
lemmas.

Lemma 3.5. If the M -act A is a generator in [Mop,Set] then CA = GA =
[Mop,Set].
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Proof. For a generator A of [Mop,Set] the equality GA = [Mop,Set] follows
by Lemma 2.9. Moreover M is a retract of A by [9, Theorem 2.3.16], there-
fore M ∈ CA, since CA is closed under retracts. Thus a morphism ε : U → V
in [Mop,Set] is an A-equivalence if and only if it is an isomorphism, therefore
CA = [Mop,Set]. �

Recall that the left E-act A is said to be pullback flat if the functor
TA = (−⊗E A) commutes with pullbacks (see [9, Definition 3.9.1]).

Lemma 3.6. If the right M -act A is indecomposable, weak self projective
and the left E-act A is pullback flat, then GA = [Eop,Set].

Proof. First observe that A is a weak ∗-act by Proposition 3.2. Hence GA =
CA = SA, and this subcategory has to be closed under subacts and limits.
Moreover E(I) is η-reflexive for any set I according to Lemma 3.1. For a
fixed Y ∈ [Eop,Set] there is an epimorphism g : E(I) → Y . Take the kernel
pair of g, that is construct the pullback

K
k1 //

k2

��

E(I)

g

��
E(I)

g
// Y

.

The functors TA and HA preserve pullbacks, the first one by hypothesis and
the second one automatically. Moreover K is a subact of E(I) × E(I) and
the closure properties of SA imply that K ∼= (TA ◦ HA)(K). Applying the
functor HA ◦ TA to the above diagram and having in mind the previous
observations we obtain a pullback diagram

K
k1 //

k2

��

E(I) = (HA ◦ TA)
(
E(I)

)
(HA◦TA)(g)

��
E(I) = (HA ◦ TA)

(
E(I)

)
(HA◦TA)(g)

// (HA ◦ TA)(Y )

.

Note that (HA ◦TA)(g) is an epimorphism by hypothesis. Then we know by
[9, Theorem 2.2.44] that both g and (HA ◦ TA)(g) are coequalizers for the
pair (k1, k2). Therefore we deduce that Y ∼= (HA ◦ TA)(Y ) canonically, so
Y ∈ SA. Thus GA = SA = [Eop,Set]. �

Now we are ready to prove the desired Morita–type result:

Theorem 3.7. Let M and E be two monoids. Then the categories [Mop,Set]
and [Eop,Set] are equivalent via the mutually inverse equivalence functors
H and T if and only if there is a cyclic, projective generator A of [Mop,Set]
such that E is the endomorphism monoid of A, in which case H = HA and
T = TA.



LOCALIZATIONS, COLOCALIZATIONS AND NON ADDITIVE ∗-OBJECTS 13

Proof. First note that a projective act is indecomposable if and only if it is
cyclic in virtue of [9, Propositions 1.5.8 and 3.17.7].

If H : [Mop,Set] � [Eop,Set] : T are mutually inverse equivalences, then
set A = T (E). Thus T ∼= TA, as the unique functor, up to a natural iso-
morphism, which commutes with colimits and satisfies TA(E) = A (see also
[7, Theorem 2.10]), and therefore H ∼= HA. Moreover the endomorphism
monoid of A is E, and A has to be projective, indecomposable and generator
together with E.

Conversely if A is indecomposable and projective in [Mop,Set] then it is a
weak ∗-act by Proposition 3.2. Since A is in addition a generator, Lemma 3.5
tells us that A is a ∗-act and CA = GA = [Mop,Set] and Theorem 3.3 implies
that A is a ∗-act. Finally the left E-act A is projective by [9, Corollary
3.18.17], so it is strongly flat by [9, Proposition 3.15.5], which means that
TA commutes both with pullbacks and equalizers. Thus GA = [Eop,Set],
according to Lemma 3.6. �
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